论文标题

认知行为疗法端到端评估的功能融合策略

Feature Fusion Strategies for End-to-End Evaluation of Cognitive Behavior Therapy Sessions

论文作者

Chen, Zhuohao, Flemotomos, Nikolaos, Ardulov, Victor, Creed, Torrey A., Imel, Zac E., Atkins, David C., Narayanan, Shrikanth

论文摘要

认知行为疗法(CBT)是一种面向目标的心理治疗,以在对话环境中实施的心理健康问题,并为其在一系列提出问题和客户人群中的有效性提供广泛的经验支持。 CBT会话的质量通常由训练有素的人类评估者评估,他们手动分配了预定义的会话级行为代码。在本文中,我们开发了一条端到端管道,将语音音频转换为诊断和抄录的文本,并提取语言功能自动编码CBT会话。我们研究了单词级和话语级的特征,并提出了功能融合策略以结合起来。话语级别的特征包括对话标签以及从另一种著名的谈话心理治疗中提取的行为代码,称为动机访谈(MI)。我们提出了一种新颖的方法,以使用话语级别标签增强基于单词的特征,以进行后续的CBT代码估计。实验表明,当单独使用和通过直接串联融合时,我们的新融合策略都优于所有研究的功能。我们还发现,鉴于CBT会话中的多量表对话转弯,合并句子分割模块可以进一步改善整体系统。

Cognitive Behavioral Therapy (CBT) is a goal-oriented psychotherapy for mental health concerns implemented in a conversational setting with broad empirical support for its effectiveness across a range of presenting problems and client populations. The quality of a CBT session is typically assessed by trained human raters who manually assign pre-defined session-level behavioral codes. In this paper, we develop an end-to-end pipeline that converts speech audio to diarized and transcribed text and extracts linguistic features to code the CBT sessions automatically. We investigate both word-level and utterance-level features and propose feature fusion strategies to combine them. The utterance level features include dialog act tags as well as behavioral codes drawn from another well-known talk psychotherapy called Motivational Interviewing (MI). We propose a novel method to augment the word-based features with the utterance level tags for subsequent CBT code estimation. Experiments show that our new fusion strategy outperforms all the studied features, both when used individually and when fused by direct concatenation. We also find that incorporating a sentence segmentation module can further improve the overall system given the preponderance of multi-utterance conversational turns in CBT sessions.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源