论文标题
通过嵌入的生成模型对个性化心脏模型参数的高维贝叶斯优化
High-dimensional Bayesian Optimization of Personalized Cardiac Model Parameters via an Embedded Generative Model
论文作者
论文摘要
以模型参数形式对患者特异性组织特性的估计对于个性化的生理模型很重要。但是,这些组织特性在潜在的解剖模型上在空间上有所不同,在有限的测量数据的存在下,对高维(HD)优化的显着挑战。降低参数空间维度的一种常见解决方案是将解剖网格明确划分为固定的少数段或多尺度层次结构。基于解剖学的参数空间的缩小呈现出对参数估计的基本瓶颈,从而导致解决方案的分辨率太低,无法反映组织异质性,或者在可行计算中可靠地估计尺寸过高。在本文中,我们提出了一个新颖的概念,该概念将生成性变异自动编码器(VAE)嵌入贝叶斯优化的目标函数中,从而提供了一个隐式低维(LD)搜索空间,该搜索空间代表了HD在空间变化的组织特性的生成代码。此外,关于生成代码的VAE编码的知识进一步用于指导搜索搜索空间的探索。提出的方法应用于心脏电生理模型中的组织兴奋性。合成和真实数据实验证明了其能够以超过10倍的效率增长来提高参数估计的准确性。
The estimation of patient-specific tissue properties in the form of model parameters is important for personalized physiological models. However, these tissue properties are spatially varying across the underlying anatomical model, presenting a significance challenge of high-dimensional (HD) optimization at the presence of limited measurement data. A common solution to reduce the dimension of the parameter space is to explicitly partition the anatomical mesh, either into a fixed small number of segments or a multi-scale hierarchy. This anatomy-based reduction of parameter space presents a fundamental bottleneck to parameter estimation, resulting in solutions that are either too low in resolution to reflect tissue heterogeneity, or too high in dimension to be reliably estimated within feasible computation. In this paper, we present a novel concept that embeds a generative variational auto-encoder (VAE) into the objective function of Bayesian optimization, providing an implicit low-dimensional (LD) search space that represents the generative code of the HD spatially-varying tissue properties. In addition, the VAE-encoded knowledge about the generative code is further used to guide the exploration of the search space. The presented method is applied to estimating tissue excitability in a cardiac electrophysiological model. Synthetic and real-data experiments demonstrate its ability to improve the accuracy of parameter estimation with more than 10x gain in efficiency.