论文标题
魔法扭曲双层石墨烯中的旋转密度波和电子源性
Spin density wave and electron nematicity in magic-angle twisted bilayer graphene
论文作者
论文摘要
我们研究了不同掺杂水平的魔法扭曲双层石墨烯的理论上多体性能。我们的研究集中在有序低温电子状态的nematicities的出现,稳定性和表现上。众所周知,在消失的相互作用时,研究系统的低能频谱由四个几乎固定的频带组成。电子电子排斥提高了这种退化。为了说明这种相互作用的效果,使用了数值平均场理论。假设基态具有类似自旋密度的波的顺序,我们引入了描述旋转磁化的多组分顺序参数。我们的模拟表明,顺序参数结构取决于掺杂级。特别是,从电荷中立点掺杂会降低有序状态的旋转对称性,表明电子列状态的出现。在Moir {é}细胞内的自旋磁化的空间分布以及单电子带的结构中,可以观察到列的表现。半填充时的列性最强(每个超级电池都有两个额外的电子或孔)。我们认为,nematic对称性破坏是系统基态的强大特征,它稳定在模型参数变化方面。具体而言,结果表明,远离电荷中立性点,它持续了本文中讨论的中间跳跃幅度的所有三个参数化。获得的理论结果与可用的实验数据一致。
We study theoretically many-body properties of magic-angle twisted bilayer graphene for different doping levels. Our investigation is focused on the emergence, stability, and manifestations of nematicity of the ordered low-temperature electronic state. It is known that, at vanishing interactions, the low-energy spectrum of the system studied consists of four almost-flat almost-degenerate bands. Electron-electron repulsion lifts this degeneracy. To account for such an interaction effect, a numerical mean-field theory is used. Assuming that the ground state has spin-density-wave-like order, we introduce a multicomponent order parameter describing spin magnetization. Our simulations show that the order parameter structure depends on the doping level. In particular, doping away from the charge neutrality point reduces the rotational symmetry of the ordered state, indicating the appearance of an electron nematic state. Manifestations of the nematicity can be observed in the spatial distribution of the spin magnetization within a moir{é} cell, as well as in the single-electron band structure. The nematicity is strongest at half-filling (two extra electron or holes per supercell). We argue that nematic symmetry breaking is a robust feature of the system ground state, stable against model parameters variations. Specifically, it is shown that, away from the charge neutrality point, it persists for all three parametrizations of the interlayer hopping amplitudes discussed in the paper. Obtained theoretical results are consistent with the available experimental data.