论文标题
在二维量子Heisenberg抗fiferromagnets中的共面和共线磁性的纠缠和Rényi熵的自旋研究
Spin-wave study of entanglement and Rényi entropy for coplanar and collinear magnetic orders in two-dimensional quantum Heisenberg antiferromagnets
论文作者
论文摘要
我们使用修改后的线性自旋理论(MLSWT)来研究$ l \ times l $ s $ square-和三角形的量子量子的长度 - $ l $ l Line子系统的地面纠缠,并使用Coplanar螺旋式磁心订单,以订购Vector Vector $ \ Mathbf {q g oldkonkokon =(Q g)=(Q,Q)=(Q,q) $ q =π$(颜色订单,$ n_g = 2 $)。概括$ q =π$的较早的MLSWT结果与$ s \ geq 3 $ sublattices($ q =2πr/s $搭配$ r $和$ r $和$ s $ coprime)。 $ l^{1/2} $缩放为$λ_0$和$λ_{\ pm q} $,带有$λ_0\neqλ_{\ pm q} $,用于螺旋顺序;这里$ \ {λ_{k_y} \} $是纠缠汉密尔顿的$ l $模式职业数字。 $ s_n $中的$(3/2)\ ln l $与$ s = 3 $螺旋订单($ q =2π/3 $)的非线性Sigma模型(NLSM)研究一致。这些和其他属性的$ s_n $和$λ_{k_y} $的数值探索,用于各向异性最近的邻居三角晶格模型,该模型的$ q $在螺旋相变化。
We use modified linear spin-wave theory (MLSWT) to study ground-state entanglement for a length-$L$ line subsystem in $L\times L$ square- and triangular-lattice quantum Heisenberg antiferromagnets with coplanar spiral magnetic order with ordering vector $\mathbf{Q}=(q,q)$ and $N_G=3$ Goldstone modes, except if $q=π$ (collinear order, $N_G=2$). Generalizing earlier MLSWT results for $q=π$ to commensurate spiral order with $s\geq 3$ sublattices ($q=2πr/s$ with $r$ and $s$ coprime), we find analytically for large $L$ a universal and $n$-independent subleading term $(N_G/2)\ln L$ in the Rényi entropy $S_n$, associated with $L^{1/2}$ scaling of $λ_0$ and $λ_{\pm q}$, with $λ_0\neq λ_{\pm q}$ for spiral order; here $\{λ_{k_y}\}$ are the $L$ mode occupation numbers of the entanglement Hamiltonian. The term $(3/2)\ln L$ in $S_n$ agrees with a nonlinear sigma model (NLSM) study of $s=3$ spiral order ($q=2π/3$). These and other properties of $S_n$ and $λ_{k_y}$ are explored numerically for an anisotropic nearest-neighbor triangular-lattice model for which $q$ varies in the spiral phase.