论文标题
快速爆炸波和射出中的年轻核心折叠超新星残余MSH 15-52/rcw 89
Fast Blast Wave and Ejecta in the Young Core-Collapse Supernova Remnant MSH 15-52/RCW 89
论文作者
论文摘要
我们银河系中核心崩溃的超新星(SN)的最年轻的残留物之一是G320.4 $ -1.2/msh 15-52,其中包含具有非常短的(1700年)spindown时代的能量脉冲星,可能是由剥离的Envelope SN IBC产生的。 PULSAR以北的明亮X射线和无线电发射与H $α$α$ NEBULA RCW 89重叠。明亮的X射线具有非常不寻常且相当令人困惑的形态,包括非常紧凑的热发射结和非热原点的扩散发射。我们报告了2017年和2018年与Chandra对RCW 89的新X射线观察结果,这使我们能够在长达十年的时间基线中测量许多结和细丝的动作。我们确定速度为$(4000 \ pm 500)d_ {5.2} $ km/s($ d_ {5.2} $的速度为5.2 kpc)的速度(4000 \ pm 500)的快速爆发波,没有任何无线电谱。许多紧凑的X射线发射结的移动变化迅速,速度高达5000 km/s,主要远距离远离脉冲星。他们的光谱表明它们是富含NE和MG的重元素SN弹出物。他们最近在Pulsar以北的密集环境培养基中的影响时,他们的影响很大。短短几年内,我们看到了结的亮度和形态的快速发展。 RCW 89中的弹性结在CAS A中在光学波长的初始速度和密度方面类似。它们可能具有相同的起源,但仍然不了解,但大概与剥离的Envelope SN爆炸本身有关。
One of the youngest known remnants of a core-collapse supernova (SN) in our Galaxy is G320.4$-$1.2/MSH 15-52 containing an energetic pulsar with a very short (1700 yr) spindown age and likely produced by a stripped-envelope SN Ibc. Bright X-ray and radio emission north of the pulsar overlaps with an H$α$ nebula RCW 89. The bright X-rays there have a highly unusual and quite puzzling morphology, consisting of both very compact thermally emitting knots and much more diffuse emission of nonthermal origin. We report new X-ray observations of RCW 89 in 2017 and 2018 with Chandra that allowed us to measure the motions of many knots and filaments on decade-long time baselines. We identify a fast blast wave with a velocity of $(4000 \pm 500)d_{5.2}$ km/s ($d_{5.2}$ is the distance in units of 5.2 kpc) with a purely nonthermal spectrum, and without any radio counterpart. Many compact X-ray emission knots are moving vary fast, with velocities as high as 5000 km/s, predominantly radially away from the pulsar. Their spectra show that they are Ne- and Mg-rich heavy-element SN ejecta. They have been significantly decelerated upon their recent impact with the dense ambient medium north of the pulsar. We see fast evolution in brightness and morphology of knots in just a few years. Ejecta knots in RCW 89 resemble those seen in Cas A at optical wavelengths in terms of their initial velocities and densities. They might have the same origin, still not understood but presumably related to stripped-envelope SN explosions themselves.