论文标题
用于照片的生成对抗网络到宫崎骏风格的漫画
Generative Adversarial Networks for photo to Hayao Miyazaki style cartoons
论文作者
论文摘要
本文通过实施卡通甘(Cartoongan)进行的以前的工作,将卡通图像的风格转移到现实摄影图像的问题上。我们在吉卜力工作室的宫崎骏的作品中培训了一个超过60 000张图像的生成对手网络(GAN)。为了评估我们的结果,我们进行了一项定性调查,将结果与两种最先进的方法进行了比较。 117调查结果表明,我们的模型平均是针对卡通般的最新方法。
This paper takes on the problem of transferring the style of cartoon images to real-life photographic images by implementing previous work done by CartoonGAN. We trained a Generative Adversial Network(GAN) on over 60 000 images from works by Hayao Miyazaki at Studio Ghibli. To evaluate our results, we conducted a qualitative survey comparing our results with two state-of-the-art methods. 117 survey results indicated that our model on average outranked state-of-the-art methods on cartoon-likeness.