论文标题

对土耳其命名实体识别的最新神经序列标记模型的评估

An Evaluation of Recent Neural Sequence Tagging Models in Turkish Named Entity Recognition

论文作者

Aras, Gizem, Makaroglu, Didem, Demir, Seniz, Cakir, Altan

论文摘要

命名实体识别(NER)是一个广泛研究的任务,可以在文本中提取和分类命名实体。 NER不仅在下游语言处理应用程序中至关重要,例如提取关系和问答,而且在大规模的大数据操作中,例如对在线数字媒体内容的实时分析。最近对土耳其语的研究工作是一种较少的具有形态丰富性质的语言,它证明了神经体系结构对良好的文本的有效性,并通过将任务作为序列标记问题提出,从而产生了最先进的结果。在这项工作中,我们凭经验研究了在同一环境中提出的针对土耳其NER标签的最新神经体系结构(双向长期记忆和基于变压器的网络)的使用。我们的结果表明,可以建模远程上下文的基于变压器的网络克服了Bilstm网络的局限性,在该字符,子字和单词级别上使用不同的输入功能。我们还提出了一个基于有条件的随机字段(CRF)层的基于变压器的网络,该网络导致公共数据集上的最新结果(95.95 \%f-measure)。我们的研究有助于量化转移学习对处理形态丰富语言的影响的文献。

Named entity recognition (NER) is an extensively studied task that extracts and classifies named entities in a text. NER is crucial not only in downstream language processing applications such as relation extraction and question answering but also in large scale big data operations such as real-time analysis of online digital media content. Recent research efforts on Turkish, a less studied language with morphologically rich nature, have demonstrated the effectiveness of neural architectures on well-formed texts and yielded state-of-the art results by formulating the task as a sequence tagging problem. In this work, we empirically investigate the use of recent neural architectures (Bidirectional long short-term memory and Transformer-based networks) proposed for Turkish NER tagging in the same setting. Our results demonstrate that transformer-based networks which can model long-range context overcome the limitations of BiLSTM networks where different input features at the character, subword, and word levels are utilized. We also propose a transformer-based network with a conditional random field (CRF) layer that leads to the state-of-the-art result (95.95\% f-measure) on a common dataset. Our study contributes to the literature that quantifies the impact of transfer learning on processing morphologically rich languages.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源