论文标题
Maxwell Chern-Simons重力与扭转的渐近对称性
Asymptotic Symmetries of Maxwell Chern-Simons Gravity with Torsion
论文作者
论文摘要
我们基于麦克斯韦代数的变形,提出了三维的Chern-Simons重力。这种对称性允许向麦克斯韦·切恩·西蒙斯(Maxwell Chern-Simons)理论引入非变化的扭转,该理论的作用恢复了Mielke-Baelker模型,以实现耦合常数的特定值。通过考虑合适的边界条件,我们表明渐近对称性由$ \ wideHat {\ mathfrak {bms}} _ 3 \ oplus \ mathfrak {vir} $ algebra带有三个独立的中央费用。
We present a three-dimensional Chern-Simons gravity based on a deformation of the Maxwell algebra. This symmetry allows introduction of a non-vanishing torsion to the Maxwell Chern-Simons theory, whose action recovers the Mielke-Baelker model for particular values of the coupling constants. By considering suitable boundary conditions, we show that the asymptotic symmetry is given by the $\widehat{\mathfrak{bms}}_3\oplus\mathfrak{vir}$ algebra with three independent central charges.