论文标题

空间形式中恒定散光的旋转表面

Rotational surfaces of constant astigmatism in space forms

论文作者

López, Rafael, Pámpano, Álvaro

论文摘要

如果每个点的主曲线主radii之间的差异是恒定函数,则riemannian空间中的表面被称为恒定的散光。在本文中,我们对空间形式中恒定散光的所有旋转表面进行分类。我们还证明,这种表面的生成曲线是曲率能量的差异问题的关键点。使用这些曲线的描述,我们局部构建了恒定散光的所有旋转表面,作为从生成曲线中相关的二维演化表面。

A surface in a Riemannian space is called of constant astigmatism if the difference between the principal radii of curvatures at each point is a constant function. In this paper we give a classification of all rotational surfaces of constant astigmatism in space forms. We also prove that the generating curves of such surfaces are critical points of a variational problem for a curvature energy. Using the description of these curves, we locally construct all rotational surfaces of constant astigmatism as the associated binormal evolution surfaces from the generating curves.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源