论文标题
非年份作为通往旅行状态的通用途径
Nonreciprocity as a generic route to traveling states
论文作者
论文摘要
我们检查了两种扩散物种的混合物的非循环耦合动力学模型。我们证明,通过拮抗交叉扩散在模型中编码在模型中的非逆时针为具有保守动力学的纯粹扩散系统中旅行模式的出现提供了一种通用机制。在没有非股展度的情况下,二元流体混合物从均匀的混合状态到一个分解状态的相变,其空间分离的区域富含两个组件之一。高于参数调整非循环性的临界值,静态固定模式获得了有限的速度,从而产生了破坏空间和时间翻译对称性的状态,以及静态模式的反射奇偶校验。我们使用可以分析研究的最小模型来阐明过渡到行进模式的通用性质。我们的工作与化学相互作用的胶体混合物中的非平衡组装有直接相关性,这些胶体的混合物已知,这些胶体表现出非重生有效相互作用,以及在模拟中观察到了这种类型的行进状态的活性和被动剂的混合物。它还提供了对在具有非保守动力学的各种非偏置系统中看到的向旅行和振荡状态的洞察力,从反应扩散和猎物前体模型到具有拮抗性相互作用的微生物的多种特质混合物。
We examine a non-reciprocally coupled dynamical model of a mixture of two diffusing species. We demonstrate that nonreciprocity, which is encoded in the model via antagonistic cross diffusivities, provides a generic mechanism for the emergence of traveling patterns in purely diffusive systems with conservative dynamics. In the absence of non-reciprocity, the binary fluid mixture undergoes a phase transition from a homogeneous mixed state to a demixed state with spatially separated regions rich in one of the two components. Above a critical value of the parameter tuning non-reciprocity, the static demixed pattern acquires a finite velocity, resulting in a state that breaks both spatial and time translational symmetry, as well as the reflection parity of the static pattern. We elucidate the generic nature of the transition to traveling patterns using a minimal model that can be studied analytically. Our work has direct relevance to nonequilibrium assembly in mixtures of chemically interacting colloids that are known to exhibit non-reciprocal effective interactions, as well as to mixtures of active and passive agents where traveling states of the type predicted here have been observed in simulations. It also provides insight on transitions to traveling and oscillatory states seen in a broad range of nonreciprocal systems with non-conservative dynamics, from reaction-diffusion and prey-predators models to multispecies mixtures of microorganisms with antagonistic interactions.