论文标题
Lorentz-Minkowski空间中可分离类型的零平均曲率表面的分类
Classification of zero mean curvature surfaces of separable type in Lorentz-Minkowski space
论文作者
论文摘要
考虑Lorentz-Minkowski $ 3 $ -SPACE $ \ MATHBB {l}^3 $,用公制$ dx^2+dy^2-dz^2 $ in Canonical Coordinates $(x,x,y,z)$。如果满足$ f(x)+g(y)+g(y)+h(z)= 0 $的方程式,则$ \ mathbb {l}^3 $中的表面是可分开的,对于某些平滑函数$ f $,$ f $,$ g $和$ h $,以实际线的开放时间间隔定义。在本文中,我们对所有零平均曲率表面进行分类,提供了示例的构造方法。
Consider the Lorentz-Minkowski $3$-space $\mathbb{L}^3$ with the metric $dx^2+dy^2-dz^2$ in canonical coordinates $(x,y,z)$. A surface in $\mathbb{L}^3$ is said to be separable if satisfies an equation of the form $f(x)+g(y)+h(z)=0$ for some smooth functions $f$, $g$ and $h$ defined in open intervals of the real line. In this article we classify all zero mean curvature surfaces of separable type, providing a method of construction of examples.