论文标题
同位素工程硅碳化物中单量子记忆的纠缠和控制
Entanglement and control of single quantum memories in isotopically engineered silicon carbide
论文作者
论文摘要
固态处于固态的核旋转既是造成反应的原因,又是旋转Qubits的宝贵资源。在这项工作中,我们证明了在碳化硅(SIC)中对孤立的29 si核自旋的控制,以在光学主动的分裂旋转和强耦合核电孔之间形成纠缠状态。然后,我们展示SIC的同位素工程如何解锁单个弱耦合核自旋的控制,并提出一种预测最佳的同位素分数的缩写方法,从而最大程度地提高了可用的核记忆数量。我们通过报告高保真电子自旋对照(F = 99.984(1)%),以及扩展的相干时间(T2 = 2.3 ms,T2DD> 14.5 ms),并增加dephasing Time(T2*)的a> 40倍数来加强这些结果。总体而言,这项工作强调了控制固态系统中核环境的重要性,并提供了里程碑式的演示,这些演示将单个光子发射器与可扩展的材料中的核记忆联系起来。
Nuclear spins in the solid state are both a cause of decoherence and a valuable resource for spin qubits. In this work, we demonstrate control of isolated 29Si nuclear spins in silicon carbide (SiC) to create an entangled state between an optically active divacancy spin and a strongly coupled nuclear register. We then show how isotopic engineering of SiC unlocks control of single weakly coupled nuclear spins and present an ab initio method to predict the optimal isotopic fraction which maximizes the number of usable nuclear memories. We bolster these results by reporting high-fidelity electron spin control (F=99.984(1)%), alongside extended coherence times (T2=2.3 ms, T2DD>14.5 ms), and a >40 fold increase in dephasing time (T2*) from isotopic purification. Overall, this work underlines the importance of controlling the nuclear environment in solid-state systems and provides milestone demonstrations that link single photon emitters with nuclear memories in an industrially scalable material.