论文标题
矩阵场理论
Matrix Field Theory
论文作者
论文摘要
本文研究矩阵字段理论,这是一种特殊类型的基质模型。首先,指出了不同类型的应用程序,从(非交通性的)量子场理论在二维量子重力上到代数几何,并在复杂曲线的模量空间上对交点的明确计算。 肯特维奇(Kontsevich)模型已经证明了witten的猜想,是矩阵字段理论的最简单例子。将研究该模型的概括,其中引入了不同的电位和光谱维度(由外部基质的渐近学定义)。由于它们自然地嵌入了黎曼表面,因此相关函数由属和边界成分的数量分级。量子场理论的重量级化程序导致有限的紫外线限制。 我们提供了一种方法来确定封闭的schwinger-dyson方程,并在连续限制中使用沃德 - 塔卡哈西的身份。分别研究了立方(Kontsevich模型)和四分之一的(Grosse-Wulkenhaar模型)电位。为了产生立方势,我们表明重态化程序与拓扑递归(TR)兼容。这意味着由Tr依次与齐默尔曼(Zimmermann)的森林公式重新授称的图膨胀计算得出的确切结果。对于四分之一的模型,精确计算了第一个相关函数(2点函数)。我们给出的暗示,四分位模型在结构上与具有零光谱曲线属的Hermitian 2-Matrix模型具有相同的特性。
This thesis studies matrix field theories, which are a special type of matrix models. First, the different types of applications are pointed out, from (noncommutative) quantum field theory over 2-dimensional quantum gravity up to algebraic geometry with explicit computation of intersection numbers on the moduli space of complex curves. The Kontsevich model, which has proved the Witten conjecture, is the simplest example of a matrix field theory. Generalisations of this model will be studied, where different potentials and the spectral dimension (defined by the asymptotics of the external matrix) are introduced. Because they are naturally embedded into a Riemann surface, the correlation functions are graded by the genus and the number of boundary components. The renormalisation procedure of quantum field theory leads to finite UV-limit. We provide a method to determine closed Schwinger-Dyson equations with the usage of Ward-Takahashi identities in the continuum limit. The cubic (Kontsevich model) and the quartic (Grosse-Wulkenhaar model) potentials are studied separately. For the cubic potential, we show that the renormalisation procedure is compatible with topological recursion (TR). This means that the exact results computed by TR coincide perturbatively with the graph expansion renormalised by Zimmermann's forest formula. For the quartic model, the first correlation function (2-point function) is computed exactly. We give hints that the quartic model has structurally the same properties as the hermitian 2-matrix model with genus zero spectral curve.