论文标题
谎言群和复杂值的谐波形态上的保形叶子
Conformal foliations on Lie groups and complex-valued harmonic morphisms
论文作者
论文摘要
我们研究了Riemannian Lie coupt $ g $ g $ a子组$ k $生成的Riemannian Lie gubs $ \ Mathcal {f} $。我们对这种叶子感兴趣,这些叶子是保形的,并且对二次拟构叶的叶子最小。当子组$ k $是重要的$ \ textbf {su}(2)(2)\ times \ textbf {su}(2)$,$ \ textbf {su}(su}(su}(su}(2)\ times \ times \ textbf {sl} _2(sl} _2), $ \ textbf {su}(2)\ times \ textbf {so}(2)$或$ \ textbf {sl} _2(\ Mathbb {r})\ times \ times \ textbf {so}(so}(2)$。通过此,我们在每种情况下产生了新的谎言组的多维家族$ g $。这些叶子$ \ MATHCAL {F} $在相应的Lie Group $ G $上产生本地复杂值的谐波形态。
We study left-invariant foliations $\mathcal{F}$ on Riemannian Lie groups $G$ generated by a subgroup $K$. We are interested in such foliations which are conformal and with minimal leaves of codimension two. We classify such foliations $\mathcal{F}$ when the subgroup $K$ is one of the important $\textbf{SU}(2)\times\textbf{SU}(2)$, $\textbf{SU}(2)\times\textbf{SL}_2(\mathbb{R})$, $\textbf{SU}(2)\times\textbf{SO}(2)$ or $\textbf{SL}_2(\mathbb{R})\times\textbf{SO}(2)$. By this we yield new multi-dimensional families of Lie groups $G$ carrying such foliations in each case. These foliations $\mathcal{F}$ produce local complex-valued harmonic morphisms on the corresponding Lie group $G$.