论文标题
通过随机波束成形的智能反射表面辅助误差通信系统的智能反射最小化
Outage Minimization for Intelligent Reflecting Surface Aided MISO Communication Systems via Stochastic Beamforming
论文作者
论文摘要
智能反射表面(IRS)有可能通过重新配置无线传播环境来显着提高网络性能。但是,在IRS辅助无线网络中,很难获得准确的下行链路通道状态信息(CSI),以进行有效的波束形式设计。在本文中,我们考虑了IRS辅助下行链路多输入单输出(MISO)网络,其中不需要基站(BS)才能知道基础通道分布。我们通过在IRS处共同优化BS和相移矩阵,同时考虑到发射功率和单型约束,从而提出了停电概率最小化问题。事实证明,该问题是一个非凸线的非平滑随机优化问题。为此,我们采用Sigmoid函数作为替代物来应对目标函数的非平滑度。此外,我们提出了一个数据驱动的有效交替的随机梯度下降(SGD)算法,以通过使用历史通道样本来解决该问题。仿真结果证明了在最小化中断概率方面,所提出的算法在基准方法上的性能提高。
Intelligent reflecting surface (IRS) has the potential to significantly enhance the network performance by reconfiguring the wireless propagation environments. It is however difficult to obtain the accurate downlink channel state information (CSI) for efficient beamforming design in IRS-aided wireless networks. In this article, we consider an IRS-aided downlink multiple-input single-output (MISO) network, where the base station (BS) is not required to know the underlying channel distribution. We formulate an outage probability minimization problem by jointly optimizing the beamforming vector at the BS and the phase-shift matrix at the IRS, while taking into account the transmit power and unimodular constraints. The formulated problem turns out to be a non-convex non-smooth stochastic optimization problem. To this end, we employ the sigmoid function as the surrogate to tackle the non-smoothness of the objective function. In addition, we propose a data-driven efficient alternating stochastic gradient descent (SGD) algorithm to solve the problem by utilizing the historical channel samples. Simulation results demonstrate the performance gains of the proposed algorithm over the benchmark methods in terms of minimizing the outage probability.