论文标题

使用岛屿灭绝和重生改善神经进化

Improving Neuroevolution Using Island Extinction and Repopulation

论文作者

Lyu, Zimeng, Karns, Joshua, ElSaid, AbdElRahman, Desell, Travis

论文摘要

神经进化通常使用物种策略来更好地探索神经网络体系结构的搜索空间。一种这样的物种策略是通过使用岛屿,这些岛屿在改善分布式进化算法的性能和收敛方面也很受欢迎。但是,在这种方法中,一些岛屿可能会停滞不前,找不到新的最佳解决方案。在本文中,我们建议利用灭绝事件和岛屿重新批次来避免过早收敛。我们通过对增强记忆模型(EXAMM)神经进化算法的进化探索来探讨这一点。在这种策略中,表现最差的岛屿的所有成员被定期杀死,并用全球最佳基因组的突变版本重新占据。此外,将这种基于岛屿的策略与Neat(增强拓扑的神经进化)物种形成策略进行比较。使用两个不同的现实世界时间序列数据集(燃煤电厂和航空飞行数据)进行实验。结果表明,具有统计学意义,该岛屿的灭绝和重生策略比Examm的原始岛屿策略和Neat的物种策略都会发展出更好的全球最佳基因组。

Neuroevolution commonly uses speciation strategies to better explore the search space of neural network architectures. One such speciation strategy is through the use of islands, which are also popular in improving performance and convergence of distributed evolutionary algorithms. However, in this approach some islands can become stagnant and not find new best solutions. In this paper, we propose utilizing extinction events and island repopulation to avoid premature convergence. We explore this with the Evolutionary eXploration of Augmenting Memory Models (EXAMM) neuro-evolution algorithm. In this strategy, all members of the worst performing island are killed of periodically and repopulated with mutated versions of the global best genome. This island based strategy is additionally compared to NEAT's (NeuroEvolution of Augmenting Topologies) speciation strategy. Experiments were performed using two different real world time series datasets (coal-fired power plant and aviation flight data). The results show that with statistical significance, this island extinction and repopulation strategy evolves better global best genomes than both EXAMM's original island based strategy and NEAT's speciation strategy.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源