论文标题
p-均值福利的紧密近似算法在亚基估值下
Tight Approximation Algorithms for p-Mean Welfare Under Subadditive Valuations
论文作者
论文摘要
我们开发了多项式时间算法,用于在对商品具有亚收益估值的$ n $ n $ agents中不可分割的商品分配。我们首先将NASH的社会福利视为我们的目标,并设计了多项式时间算法,该算法在价值Oracle模型中,发现了NASH最佳分配的$ 8N $ APPRXIMATION。亚基估值包括XOS(分分为小节)和特殊情况下的估值。即使对于特殊情况下,我们的结果也可以在Garg等人的先前最著名的$ O(n \ log n)$ - 近似值上改善。 (2020)。 更普遍地,我们研究了$ P $ MEAN福利的最大化。 $ p $ - 公元的福利是通过( - \ infty,1] $的指数术语$ p \参数化的,包括一系列福利功能,例如社交福利($ p = 1 $),纳什社交福利($ p \ 0 $)($ p \ to 0 $),以及egalitaranian for to n egalitaranian for to an a n a al ang and ang the and $ \ fives and the and。 ( - \ infty,1] $,计算(在价值oracle模型和多项式时间)中,任何给定的$ p \ in( - \ infty,1] $)具有$ p $ -MEAN福利至少$ \ frac {1} {1} {8n} $ times的分配。 此外,我们表明我们的近似保证金对于XOS和因此估值基本上是紧密的。我们适应了Dobzinski等人的结果。 (2010年)为了表明,在XOS估值下,$ o \左(n^{1- \ varepsilon} \右)$近似$ p $ -mean福利的任何$ p \ in( - \ infty,1] $(包括NASH社交福利)(包括Nash Social Feelfare)(包括Nash Social Feelfare)都需要数量肯定的custress $ is $ \ vareps $ \ vareps;
We develop polynomial-time algorithms for the fair and efficient allocation of indivisible goods among $n$ agents that have subadditive valuations over the goods. We first consider the Nash social welfare as our objective and design a polynomial-time algorithm that, in the value oracle model, finds an $8n$-approximation to the Nash optimal allocation. Subadditive valuations include XOS (fractionally subadditive) and submodular valuations as special cases. Our result, even for the special case of submodular valuations, improves upon the previously best known $O(n \log n)$-approximation ratio of Garg et al. (2020). More generally, we study maximization of $p$-mean welfare. The $p$-mean welfare is parameterized by an exponent term $p \in (-\infty, 1]$ and encompasses a range of welfare functions, such as social welfare ($p = 1$), Nash social welfare ($p \to 0$), and egalitarian welfare ($p \to -\infty$). We give an algorithm that, for subadditive valuations and any given $p \in (-\infty, 1]$, computes (in the value oracle model and in polynomial time) an allocation with $p$-mean welfare at least $\frac{1}{8n}$ times the optimal. Further, we show that our approximation guarantees are essentially tight for XOS and, hence, subadditive valuations. We adapt a result of Dobzinski et al. (2010) to show that, under XOS valuations, an $O \left(n^{1-\varepsilon} \right)$ approximation for the $p$-mean welfare for any $p \in (-\infty,1]$ (including the Nash social welfare) requires exponentially many value queries; here, $\varepsilon>0$ is any fixed constant.