论文标题
快速和自适应低光图像增强的视觉感知模型
Visual Perception Model for Rapid and Adaptive Low-light Image Enhancement
论文作者
论文摘要
低光图像增强是一种有前途的解决方案,可以解决人类视力系统(HVS)在低光环境中感知信息的敏感性不足的问题。以前的基于Etinex的作品总是通过估计光强度来完成增强任务。不幸的是,单个光强度建模很难准确地模拟视觉感知信息,从而导致视觉光敏性不平衡和弱适应性的问题。为了解决这些问题,我们探讨了光源与视觉感知之间的精确关系,然后提出视觉感知(VP)模型以获取对视觉感知的精确数学描述。 VP模型的核心是将光源分解为光强度和光空间分布,以描述HVS的感知过程,从而提供照明和反射率的改进估计。为了降低估计过程的复杂性,我们介绍了快速和自适应的$ \mathbfβ$和$ \mathbfγ$功能,以构建照明和反射率估计方案。最后,我们提出了一个最佳确定策略,该策略由\ emph {cycle操作}和\ emph {比较器}组成。具体而言,\ emph {比较器}负责通过实现\ emph {cycle oterive}来确定多个增强结果的最佳增强结果}。通过协调提出的VP模型,照明和反射率估计方案以及最佳确定策略,我们提出了一个快速而自适应的框架,以增强低光图像。广泛的实验结果是,与当前的最新技术相比,所提出的方法在视觉比较,定量评估和计算效率方面取得更好的性能。
Low-light image enhancement is a promising solution to tackle the problem of insufficient sensitivity of human vision system (HVS) to perceive information in low light environments. Previous Retinex-based works always accomplish enhancement task by estimating light intensity. Unfortunately, single light intensity modelling is hard to accurately simulate visual perception information, leading to the problems of imbalanced visual photosensitivity and weak adaptivity. To solve these problems, we explore the precise relationship between light source and visual perception and then propose the visual perception (VP) model to acquire a precise mathematical description of visual perception. The core of VP model is to decompose the light source into light intensity and light spatial distribution to describe the perception process of HVS, offering refinement estimation of illumination and reflectance. To reduce complexity of the estimation process, we introduce the rapid and adaptive $\mathbfβ$ and $\mathbfγ$ functions to build an illumination and reflectance estimation scheme. Finally, we present a optimal determination strategy, consisting of a \emph{cycle operation} and a \emph{comparator}. Specifically, the \emph{comparator} is responsible for determining the optimal enhancement results from multiple enhanced results through implementing the \emph{cycle operation}. By coordinating the proposed VP model, illumination and reflectance estimation scheme, and the optimal determination strategy, we propose a rapid and adaptive framework for low-light image enhancement. Extensive experiment results demenstrate that the proposed method achieves better performance in terms of visual comparison, quantitative assessment, and computational efficiency, compared with the currently state-of-the-arts.