论文标题
合作学习的模型链接选择
Model Linkage Selection for Cooperative Learning
论文作者
论文摘要
我们考虑一个分布式学习设置,每个代理/学习者都拥有一个特定的参数模型和数据源。目的是整合一组学习者的信息,以增强给定学习者的预测准确性。整合信息的一种自然方法是在一组学习者中建立共同的模型,该模型共享共同的感兴趣参数。但是,一组学习者的基础参数共享模式可能不是先验的。误解每个学习者的参数共享模式或参数模型通常会产生偏差的估计并降低预测准确性。我们提出了一种一般方法,以整合一组学习者的信息,以与模型和参数共享模式的错误特异性相关。主要关键是依次合并其他学习者,这些学习者可以根据一组学习者的用户指定参数共享模式来提高现有关节模型的预测准确性。从理论上讲,我们表明所提出的方法可以数据适应地选择最合适的参数共享方式,从而提高任何感兴趣的特定学习者的预测性能。广泛的数值研究表明该方法的有希望的性能。
We consider a distributed learning setting where each agent/learner holds a specific parametric model and data source. The goal is to integrate information across a set of learners to enhance the prediction accuracy of a given learner. A natural way to integrate information is to build a joint model across a group of learners that shares common parameters of interest. However, the underlying parameter sharing patterns across a set of learners may not be a priori known. Misspecifying the parameter sharing patterns or the parametric model for each learner often yields a biased estimation and degrades the prediction accuracy. We propose a general method to integrate information across a set of learners that is robust against misspecifications of both models and parameter sharing patterns. The main crux is to sequentially incorporate additional learners that can enhance the prediction accuracy of an existing joint model based on user-specified parameter sharing patterns across a set of learners. Theoretically, we show that the proposed method can data-adaptively select the most suitable way of parameter sharing and thus enhance the predictive performance of any particular learner of interest. Extensive numerical studies show the promising performance of the proposed method.