论文标题
通用能源界限的量子zermelo问题
Quantum Zermelo problem for general energy resource bounds
论文作者
论文摘要
提供了针对具有一般能源资源界限的控制哈密顿量的量子zermelo问题。有趣的是,控制哈密顿量和控制时间的能源资源定义了一对共轭变量,以最大程度地减少能源不确定性关系。所得的控制协议应用于单个量子,以及由海森堡自旋二聚体表示的两次相互作用量子系统。对于这些低维系统,发现物理上可实现的控制哈密顿人仅出于某些,量化的能源资源。
A solution to the quantum Zermelo problem for control Hamiltonians with general energy resource bounds is provided. Interestingly, the energy resource of the control Hamiltonian and the control time define a pair of conjugate variables that minimize the energy-time uncertainty relation. The resulting control protocol is applied to a single qubit as well as to a two-interacting qubit system represented by a Heisenberg spin dimer. For these low-dimensional systems, it is found that physically realizable control Hamiltonians exist only for certain, quantized, energy resources.