论文标题

网络切片和移动边缘计算的联合计划:模型和算法

Joint Planning of Network Slicing and Mobile Edge Computing: Models and Algorithms

论文作者

Xiang, Bin, Elias, Jocelyne, Martignon, Fabio, Di Nitto, Elisabetta

论文摘要

多访问边缘计算(MEC)促进了具有严格的QoS要求,尤其是延迟的关键应用程序的部署。本文考虑了共同计划边缘的计算资源可用性的问题,移动网络和边缘计算资源的切片以及异质流量类型的路由到各种切片。这些方面是交织在一起的,必须将其解决,以便为所有移动用户提供所需的QoS,并且仍能控制成本的流量类型。我们将问题提出为混合企业非线性程序(MINLP),并定义了一种启发式,命名为邻居探索和顺序固定(NESF),以促进问题的解决方案。该方法允许网络运营商微调网络操作成本和用户所经历的总延迟。我们根据两种自然的贪婪方法评估了提出的模型和启发式方法的性能。我们显示了所有考虑的参数(即不同类型的流量,可容忍的延迟,网络拓扑和带宽,计算和链接容量)对定义模型的变化的影响。数值结果表明,NESF非常有效,即使对于大规模网络方案,也可以在很短的计算时间内实现近乎最佳的计划和资源分配解决方案。

Multi-access Edge Computing (MEC) facilitates the deployment of critical applications with stringent QoS requirements, latency in particular. This paper considers the problem of jointly planning the availability of computational resources at the edge, the slicing of mobile network and edge computation resources, and the routing of heterogeneous traffic types to the various slices. These aspects are intertwined and must be addressed together to provide the desired QoS to all mobile users and traffic types still keeping costs under control. We formulate our problem as a mixed-integer nonlinear program (MINLP) and we define a heuristic, named Neighbor Exploration and Sequential Fixing (NESF), to facilitate the solution of the problem. The approach allows network operators to fine tune the network operation cost and the total latency experienced by users. We evaluate the performance of the proposed model and heuristic against two natural greedy approaches. We show the impact of the variation of all the considered parameters (viz., different types of traffic, tolerable latency, network topology and bandwidth, computation and link capacity) on the defined model. Numerical results demonstrate that NESF is very effective, achieving near-optimal planning and resource allocation solutions in a very short computing time even for large-scale network scenarios.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源