论文标题

二维关键$ Q $ - 状态POTTS模型中的几何四点函数

Geometrical four-point functions in the two-dimensional critical $Q$-state Potts model: The interchiral conformal bootstrap

论文作者

He, Yifei, Jacobsen, Jesper Lykke, Saleur, Hubert

论文摘要

基于我们早期工作[Arxiv:1809.02191]中确定的频谱,我们通过数值求解引导程序,以确定$ q $ - 状态potts模型中几何连接性的四点相关函数。在我们的方法中,至关重要的是存在“手术互构块”,这是由重量$ h_ {r,1} $的领域的退化而引起的,in \ mathbb {n}^*$,与“ Chirail Algebra”的潜在存在有关。我们还找到了存在“重新归一化”递归的证据,取代了liouville理论中$φ_{12}^d $的堕落性的递归,并以封闭形式获得了前几个此类递归。这暗示了该模型中相关函数的完全分析确定的可能性。

Based on the spectrum identified in our earlier work [arXiv:1809.02191], we numerically solve the bootstrap to determine four-point correlation functions of the geometrical connectivities in the $Q$-state Potts model. Crucial in our approach is the existence of "interchiral conformal blocks", which arise from the degeneracy of fields with conformal weight $h_{r,1}$, with $r\in\mathbb{N}^*$, and are related to the underlying presence of the "interchiral algebra" introduced in [arXiv:1207.6334]. We also find evidence for the existence of "renormalized" recursions, replacing those that follow from the degeneracy of the field $Φ_{12}^D$ in Liouville theory, and obtain the first few such recursions in closed form. This hints at the possibility of the full analytical determination of correlation functions in this model.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源