论文标题
二维关键$ Q $ - 状态POTTS模型中的几何四点函数
Geometrical four-point functions in the two-dimensional critical $Q$-state Potts model: The interchiral conformal bootstrap
论文作者
论文摘要
基于我们早期工作[Arxiv:1809.02191]中确定的频谱,我们通过数值求解引导程序,以确定$ q $ - 状态potts模型中几何连接性的四点相关函数。在我们的方法中,至关重要的是存在“手术互构块”,这是由重量$ h_ {r,1} $的领域的退化而引起的,in \ mathbb {n}^*$,与“ Chirail Algebra”的潜在存在有关。我们还找到了存在“重新归一化”递归的证据,取代了liouville理论中$φ_{12}^d $的堕落性的递归,并以封闭形式获得了前几个此类递归。这暗示了该模型中相关函数的完全分析确定的可能性。
Based on the spectrum identified in our earlier work [arXiv:1809.02191], we numerically solve the bootstrap to determine four-point correlation functions of the geometrical connectivities in the $Q$-state Potts model. Crucial in our approach is the existence of "interchiral conformal blocks", which arise from the degeneracy of fields with conformal weight $h_{r,1}$, with $r\in\mathbb{N}^*$, and are related to the underlying presence of the "interchiral algebra" introduced in [arXiv:1207.6334]. We also find evidence for the existence of "renormalized" recursions, replacing those that follow from the degeneracy of the field $Φ_{12}^D$ in Liouville theory, and obtain the first few such recursions in closed form. This hints at the possibility of the full analytical determination of correlation functions in this model.