论文标题
在Jordan-Moore-Gibson-thompson波动方程中,具有二次梯度非线性
On the Jordan-Moore-Gibson-Thompson wave equation in hereditary fluids with quadratic gradient nonlinearity
论文作者
论文摘要
我们证明了时间jordan-more-gibson-thompson-thompson声波方程的全局溶解度,并在$ \ mathbb {r}^n $中,其中$ n \ geq 3 $。该波方程将超声传播模拟于放松的遗传液中,并结合了局部和累积的非线性效应。全局溶解度的证明基于一系列时间均匀的高阶能量边界,并在指数衰减的内存内核和足够小且常规的初始数据的假设下得出。
We prove global solvability of the third-order in time Jordan-More-Gibson-Thompson acoustic wave equation with memory in $\mathbb{R}^n$, where $n \geq 3$. This wave equation models ultrasonic propagation in relaxing hereditary fluids and incorporates both local and cumulative nonlinear effects. The proof of global solvability is based on a sequence of high-order energy bounds that are uniform in time, and derived under the assumption of an exponentially decaying memory kernel and sufficiently small and regular initial data.