论文标题

阳性双曲线和存在闭合度

Acylindrical hyperbolicity and existential closedness

论文作者

André, Simon

论文摘要

令$ g $为有限的组,让$ h $为$ g $的子组。我们证明,如果$ h $是酰基的双曲线,并且以$ g $的形式结束,则$ g $是酰基偶然的双曲线。作为推论,任何有限呈现的组都与有限类型的表面的映射类组,$ \ mathrm {out}(f_n)(f_n)$或$ \ mathrm {autrm {aut}(aut}(f_n)$ for $ n \ geq 2 $或Higman Group,to Higman Group,Higman Group,是Higman Group,IS AcylIndrindrimbyBoltyBoltimbolicbolic Byperbolic。

Let $G$ be a finitely presented group, and let $H$ be a subgroup of $G$. We prove that if $H$ is acylindrically hyperbolic and existentially closed in $G$, then $G$ is acylindrically hyperbolic. As a corollary, any finitely presented group which is existentially equivalent to the mapping class group of a surface of finite type, to $\mathrm{Out}(F_n)$ or $\mathrm{Aut}(F_n)$ for $n\geq 2$ or to the Higman group, is acylindrically hyperbolic.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源