论文标题
我们可以使用下一代重力波检测器进行shapiro延迟的陆生精度测量吗?
Can we use next-generation gravitational wave detectors for terrestrial precision measurements of Shapiro delay?
论文作者
论文摘要
Shapiro Time延迟是一般相对论和纽顿后重力理论的基本检验之一。因此,其测量值可用于探测与牛顿后重力形式中单位质量产生的时空曲率有关的参数$γ$。迄今为止,所有时间延迟的测量已在天文尺度上进行。据说2010年,地球上的重力波检测器可用于通过大规模旋转系统在陆地尺度上测量shapiro延迟。在这项工作的基础上,我们考虑如何使用下一代重力波检测器进行夏皮罗延迟的测量。我们进行了分析,以测量下一代重力波检测宇宙探索器和爱因斯坦望远镜的分析,以确定如何精确测量效果。使用旋转的质量单元设计,我们发现宇宙探险家和爱因斯坦望远镜可以分别在1年的集成时间内测量其幅度信号与噪声比为$ \ sim28 $和$ \ sim43 $以上的shapiro延迟信号。通过使用此技术测量夏皮罗延迟,下一代干涉仪将允许在纽约后牛顿后的重力质量中,以$γ$的范围测量$γ$,并具有次级精度。
Shapiro time delay is one of the fundamental tests of general relativity and post-Newtonian theories of gravity. Consequently, its measurements can be used to probe the parameter $γ$ which is related to spacetime curvature produced by a unit mass in the post-Newtonian formalism of gravity. To date all measurements of time delay have been conducted on astronomical scales. It was asserted in 2010 that gravitational wave detectors on Earth could be used to measure Shapiro delay on a terrestrial scale via massive rotating systems. Building on that work, we consider how measurements of Shapiro delay can be made using next-generation gravitational wave detectors. We perform an analysis for measuring Shapiro delay with the next-generation gravitational wave detectors Cosmic Explorer and Einstein Telescope to determine how precisely the effect can be measured. Using a rotating mass unit design, we find that Cosmic Explorer and Einstein Telescope can measure the Shapiro delay signal with amplitude signal to noise ratios upwards of $\sim28 $ and $\sim43$ in 1 year of integration time, respectively. By measuring Shapiro delay with this technique, next-generation interferometers will allow for terrestrial measurements of $γ$ in the paramaterized post-Newtonian formalism of gravity with sub-percent precision.