论文标题
歧管上本地固定的高斯和卡田极端
Extremes of locally stationary Gaussian and chi fields on manifolds
论文作者
论文摘要
取决于(0,1] $中的参数$ h \,令$ \ {x_h(\ mathbf {t})$,$ \ mathbf {t} \ in \ in \ mathcal {m} _h \} $ be compact $ \ nlocal $ \ mather forsian $ \ mather forsian $} $ x_h $,我们研究了$ \ mathcal {m} _h $ $ x_h $ $ x_h $的渐近旅行概率。
Depending on a parameter $h\in (0,1]$, let $\{X_h(\mathbf{t})$, $\mathbf{t}\in\mathcal{M}_h\}$ be a class of centered Gaussian fields indexed by compact manifolds $\mathcal{M}_h$. For locally stationary Gaussian fields $X_h$, we study the asymptotic excursion probabilities of $X_h$ on $\mathcal{M}_h$. Two cases are considered: (i) $h$ is fixed and (ii) $h\rightarrow0$. These results are extended to obtain the limit behaviors of the extremes of locally stationary $χ$-fields on manifolds.