论文标题

$ \ text {sl} _ {2k+1} $的三角形演示和倾斜模块

Triangle presentations and tilting modules for $\text{SL}_{2k+1}$

论文作者

Jones, Corey

论文摘要

三角形演示文稿是有限的投影几何形状上的组合结构,这些几何形式表征了在本地有限的$ \ tilde {\ text {a}} _ {n-1} $($ n \ ge3 $)的本地有限建筑物的顶点。从类型$ \ tilde {\ text {a}} _ {n-1} $三角形表示$ q $的几何形式中,我们在图表单类别$ \ text {web} {web}(web}(\ text {sl) $ p \ ge n-1 $,使得$ q \ equiv 1 $ mod $ p $。当$ \ mathbb {k} $被代数关闭并且$ n $奇数时,这为$ \ text {sl} _ {n} $的倾斜模块类别提供了新的光纤函子。

Triangle presentations are combinatorial structures on finite projective geometries which characterize groups acting simply transitively on the vertices of a locally finite building of type $\tilde{\text{A}}_{n-1}$ ($n\ge3$). From a type $\tilde{\text{A}}_{n-1}$ triangle presentation on a geometry of order $q$, we construct a fiber functor on the diagrammatic monoidal category $\text{Web}(\text{SL}^{-}_{n})$ over any field $\mathbb{k}$ with characteristic $p\ge n-1$ such that $q \equiv 1$ mod $p$. When $\mathbb{k}$ is algebraically closed and $n$ odd, this gives new fiber functors on the category of tilting modules for $\text{SL}_{n}$.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源