论文标题
Landau的聚类图案和通过Amplituhedron的领先奇异性
Cluster patterns in Landau and Leading Singularities via the Amplituhedron
论文作者
论文摘要
我们推进了$ \ Mathcal {n} = 4 $ Super Yang-Mills理论中散射幅度的构建基块中集群 - 代数模式的探索。特别是,我们猜想,鉴于循环幅度最大切割,可以在相应的领先奇异点的任何表示中出现的每种延态不变的奇异点和极点。我们检查这些邻接的所有一环幅度最多9点。在此过程中,我们还证明了所有(理性)n $^2 $ MHV Yangian不变性群是聚类的,这证实了原始猜想。
We advance the exploration of cluster-algebraic patterns in the building blocks of scattering amplitudes in $\mathcal{N}=4$ super Yang-Mills theory. In particular we conjecture that, given a maximal cut of a loop amplitude, Landau singularities and poles of each Yangian invariant appearing in any representation of the corresponding Leading Singularities can be found together in a cluster. We check these adjacencies for all one-loop amplitudes up to 9 points. Along the way, we also prove that all (rational) N$^2$MHV Yangian invariants are cluster adjacent, confirming original conjectures.