论文标题
基于交错的对角线嵌入线性场尺寸流码
Staggered Diagonal Embedding Based Linear Field Size Streaming Codes
论文作者
论文摘要
$(a,b,τ)$流式代码是一个数据包级擦除代码,可以在严格的延迟约束下恢复$τ$ time单位,这是从$ b $擦除的爆发或$ a $ a $ a随机擦除的爆发中发生的,发生在滑动时间段的延时范围内。尽管此类流码的速率 - 最佳构建体可用于所有参数$ \ {a,b,τ,w \} $中的文献中,但在大多数情况下,它们都需要二次,$ o(τ^2)$ field size。在这项工作中,我们在降低场地尺寸和目前的速率$ o(τ)$的进一步进展中取得了进一步的进展:(i)$ gcd(b,τ+1-a)\ ge a $(ii)$τ+1 $τ+1 \ ge a+b $ and $ b $和$ b $ and $ b \ mod \ a \ in \ in \ in \ in \ in \ in \ {0,a-1-1,
An $(a,b,τ)$ streaming code is a packet-level erasure code that can recover under a strict delay constraint of $τ$ time units, from either a burst of $b$ erasures or else of $a$ random erasures, occurring within a sliding window of time duration $w$. While rate-optimal constructions of such streaming codes are available for all parameters $\{a,b,τ,w\}$ in the literature, they require in most instances, a quadratic, $O(τ^2)$ field size. In this work, we make further progress towards field size reduction and present rate-optimal $O(τ)$ field size streaming codes for two regimes: (i) $gcd(b,τ+1-a)\ge a$ (ii) $τ+1 \ge a+b$ and $b \mod \ a \in \{0,a-1\}$.