论文标题

将一类二维积分降低到一维,并应用于高斯变换

Reducing a class of two-dimensional integrals to one-dimension with application to Gaussian Transforms

论文作者

Straton, Jack C.

论文摘要

量子理论在多维积分中浮现,这些积分包含集成变量,它们的倒数和这些变量的逆多项式中的指数。本文引入了一种将这种积分对减少到一个维度的手段,当集成剂包含幂的次数xy/(x+y)的任意函数乘以指数的各种组合。在某些情况下,这些指数直接来自涉及平面波,氢波函数,Yukawa和/或库仑电位的过渡分化。在其他情况下,这些指数源于此类功能的高斯变换。

Quantum theory is awash in multidimensional integrals that contain exponentials in the integration variables, their inverses, and inverse polynomials of those variables. The present paper introduces a means to reduce pairs of such integrals to one dimension when the integrand contains powers times an arbitrary function of xy/(x+y) multiplying various combinations of exponentials. In some cases these exponentials arise directly from transition-amplitudes involving products of plane waves, hydrogenic wave functions, Yukawa and/or Coulomb potentials. In other cases these exponentials arise from Gaussian transforms of such functions.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源