论文标题

关于$ k_n $的简单图纸结构的备注

Remarks on the structure of simple drawings of $K_n$

论文作者

Richter, R. Bruce, Sullivan, Matthew

论文摘要

在研究球体中完整图的简单图纸的属性时,我们出现了两个自然问题:边缘可以在同一面部边界上有多个段吗?每个都面对3个蛋白的侧面的交点吗?第二篇在先前发表的文章中被认为是显而易见的,但是当被问及时,两篇论文的作者都无法提供证据。我们提供证据。第一个很容易被证明,并且该技术产生了第三个,甚至更简单的事实:顶点的三个边缘都没有同一面的内部点事件。

In studying properties of simple drawings of the complete graph in the sphere, two natural questions arose for us: can an edge have multiple segments on the boundary of the same face? and is each face the intersection of sides of 3-cycles? The second is asserted to be obvious in two previously published articles, but when asked, authors of both papers were unable to provide a proof. We present a proof. The first is quite easily proved and the technique yields a third, even simpler, fact: no three edges at a vertex all have internal points incident with the same face.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源