论文标题
必要和可能的赢家算法技术
Algorithmic Techniques for Necessary and Possible Winners
论文作者
论文摘要
我们调查计算选举中不完整选民偏好的必要赢家的实际方面。对于必要的获胜者,我们展示了如何实施和加速Xia和Conitzer的多项式时间算法。对于可能的赢家,问题是NP-HARD,我们将自然减少对所有位置评分规则的整数线性编程(ILP),并将其在领先的商业优化求解器中实施。此外,我们设计了优化技术,以最大程度地减少ILP执行的数量,并且通常会完全避免它们。我们进行了一项彻底的实验研究,其中包括基于实际和合成数据的选举数据的丰富基准。我们的发现表明,尽管可能的获胜者最糟糕的是,但此处呈现的算法技术却很好地扩展了,并且可以用来计算现实情况下可能的获胜者。
We investigate the practical aspects of computing the necessary and possible winners in elections over incomplete voter preferences. In the case of the necessary winners, we show how to implement and accelerate the polynomial-time algorithm of Xia and Conitzer. In the case of the possible winners, where the problem is NP-hard, we give a natural reduction to Integer Linear Programming (ILP) for all positional scoring rules and implement it in a leading commercial optimization solver. Further, we devise optimization techniques to minimize the number of ILP executions and, oftentimes, avoid them altogether. We conduct a thorough experimental study that includes the construction of a rich benchmark of election data based on real and synthetic data. Our findings suggest that, the worst-case intractability of the possible winners notwithstanding, the algorithmic techniques presented here scale well and can be used to compute the possible winners in realistic scenarios.