论文标题

用于教育数据挖掘的系统合奏模型选择方法

Systematic Ensemble Model Selection Approach for Educational Data Mining

论文作者

Injadat, MohammadNoor, Moubayed, Abdallah, Nassif, Ali Bou, Shami, Abdallah

论文摘要

过去,已经进行了大量的研究,重点是预测学生的表现,以支持他们的发展。许多机构专注于提高绩效和教育质量。这可以通过利用数据挖掘技术来分析和预测学生的表现并确定可能影响其最终标记的可能因素来实现。为了解决这个问题,这项工作首先使用多种图形,统计和定量技术在两个单独的阶段(分别为20%和50%)的两个单独阶段(分别为20%和50%)彻底探索和分析两个不同的数据集。该功能分析提供了有关考虑的不同特征的性质的见解,并有助于选择机器学习算法及其参数。此外,这项工作提出了一种基于GINI指数和P值的系统方法,以从六种潜在的机器学习算法的组合中选择合适的合奏学习者。实验结果表明,所提出的集合模型在两个数据集的所有阶段都达到了高精度和低的假正率。

A plethora of research has been done in the past focusing on predicting student's performance in order to support their development. Many institutions are focused on improving the performance and the education quality; and this can be achieved by utilizing data mining techniques to analyze and predict students' performance and to determine possible factors that may affect their final marks. To address this issue, this work starts by thoroughly exploring and analyzing two different datasets at two separate stages of course delivery (20 percent and 50 percent respectively) using multiple graphical, statistical, and quantitative techniques. The feature analysis provides insights into the nature of the different features considered and helps in the choice of the machine learning algorithms and their parameters. Furthermore, this work proposes a systematic approach based on Gini index and p-value to select a suitable ensemble learner from a combination of six potential machine learning algorithms. Experimental results show that the proposed ensemble models achieve high accuracy and low false positive rate at all stages for both datasets.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源