论文标题
用希尔伯特曲线代表整个幻灯片的癌症图像特征
Representing Whole Slide Cancer Image Features with Hilbert Curves
论文作者
论文摘要
感兴趣的区域(ROI)包含病理学中的形态特征,整个幻灯片图像(WSI)用多边形界定[1]。这些多边形通常以文本符号(带有边数)或二进制掩码形式表示。文本符号具有人类可读性和可移植性的优势,而二进制掩码表示形式更有用,因为采用深度学习方法的功能萃取管道的输入和输出。对于任何给定的整个幻灯片图像,可以将超过一个以上的蜂窝特征分割为产生相应数量的多边形。这些分割的所有处理整个幻灯片图像的语料库为过滤特定的数据领域带来了各种挑战,以用于交互式实时和多尺度显示和分析。图像位置的简单范围查询不扩展,而需要空间索引方案。在本文中,我们建议同时使用希尔伯特曲线进行空间索引和多边形ROI表示。这是通过使用一系列希尔伯特曲线[2]创建有效且固有地在空间索引的机器上使用的形式来实现的。 Hilbert曲线的独特特性,可以使ROI的蒙版和多边形界定划分,这是矢量提取的RO的元素描述的形态特征保持了其相对位置,用于同一图像的不同尺度。
Regions of Interest (ROI) contain morphological features in pathology whole slide images (WSI) are delimited with polygons[1]. These polygons are often represented in either a textual notation (with the array of edges) or in a binary mask form. Textual notations have an advantage of human readability and portability, whereas, binary mask representations are more useful as the input and output of feature-extraction pipelines that employ deep learning methodologies. For any given whole slide image, more than a million cellular features can be segmented generating a corresponding number of polygons. The corpus of these segmentations for all processed whole slide images creates various challenges for filtering specific areas of data for use in interactive real-time and multi-scale displays and analysis. Simple range queries of image locations do not scale and, instead, spatial indexing schemes are required. In this paper we propose using Hilbert Curves simultaneously for spatial indexing and as a polygonal ROI representation. This is achieved by using a series of Hilbert Curves[2] creating an efficient and inherently spatially-indexed machine-usable form. The distinctive property of Hilbert curves that enables both mask and polygon delimitation of ROIs is that the elements of the vector extracted ro describe morphological features maintain their relative positions for different scales of the same image.