论文标题

可视化Covid-19研究

Visualising COVID-19 Research

论文作者

Bras, Pierre Le, Gharavi, Azimeh, Robb, David A., Vidal, Ana F., Padilla, Stefano, Chantler, Mike J.

论文摘要

全世界在2020年看到了一场史无前例的全球爆发SARS-COV-2,这是一种新的冠状病毒菌株,导致了19日大流行,并从根本上改变了我们的生活和工作条件。许多科学家正在孜孜不倦地寻找治疗方法和可能的疫苗。此外,政府,科学机构和公司正在迅速采取行动,以使资源可用,包括资金和大型数据存储库,以加快旨在解决这一大流行的创新和发现。在本文中,我们开发了一种新颖的基于主题的可视化方法,结合了大型语料库,信息映射和趋势分析的高级数据建模,以提供自上而下和自下而上的浏览和搜索界面,以快速发现主题和研究资源。我们将此方法应用于最近发布的两个出版物数据集(Dimensions的Covid-19数据集和Alen AI的CORD-19)。结果揭示了有趣的信息,包括在社会疏远等主题中加大努力;跨域倡议(例如心理健康和教育);不断发展的医学主题研究;以及通过出版物在不同领土上的病毒的发展轨迹。结果还表明,有必要快速自动启用大型语料库的搜索和浏览。我们认为,我们的方法将改善未来的大量可视化和发现系统,但也希望我们的可视化界面目前将帮助科学家,研究人员和公众解决与Covid-19-19的大流行有关的众多问题。

The world has seen in 2020 an unprecedented global outbreak of SARS-CoV-2, a new strain of coronavirus, causing the COVID-19 pandemic, and radically changing our lives and work conditions. Many scientists are working tirelessly to find a treatment and a possible vaccine. Furthermore, governments, scientific institutions and companies are acting quickly to make resources available, including funds and the opening of large-volume data repositories, to accelerate innovation and discovery aimed at solving this pandemic. In this paper, we develop a novel automated theme-based visualisation method, combining advanced data modelling of large corpora, information mapping and trend analysis, to provide a top-down and bottom-up browsing and search interface for quick discovery of topics and research resources. We apply this method on two recently released publications datasets (Dimensions' COVID-19 dataset and the Allen Institute for AI's CORD-19). The results reveal intriguing information including increased efforts in topics such as social distancing; cross-domain initiatives (e.g. mental health and education); evolving research in medical topics; and the unfolding trajectory of the virus in different territories through publications. The results also demonstrate the need to quickly and automatically enable search and browsing of large corpora. We believe our methodology will improve future large volume visualisation and discovery systems but also hope our visualisation interfaces will currently aid scientists, researchers, and the general public to tackle the numerous issues in the fight against the COVID-19 pandemic.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源