论文标题

Daugnet:无监督,多源,多目标和终身域的适应性卫星图像的语义分割

DAugNet: Unsupervised, Multi-source, Multi-target, and Life-long Domain Adaptation for Semantic Segmentation of Satellite Images

论文作者

Tasar, Onur, Giros, Alain, Tarabalka, Yuliya, Alliez, Pierre, Clerc, Sébastien

论文摘要

卫星图像的域适应性最近引起了越来越多的关注,以克服分割大规模卫星图像时机器学习模型的有限概括能力。大多数现有的方法都试图将模型从一个域调整到另一个领域。但是,这种单源和单目标设置可阻止这些方法是可扩展的解决方案,因为如今通常可以使用具有不同数据分布的多个源和目标域。此外,卫星图像的连续扩散需要分类器适应不断增加数据。我们提出了一种新颖的方法,即创造的道路,用于卫星图像的无监督,多源,多目标和终身域的适应。它由分类器和数据增强器组成。数据增强器是一个浅网络,即使在随着时间的推移添加新数据时,也能够以无监督的方式在多个卫星图像之间执行样式传输。在每个培训迭代中,它为分类器提供了多元化的数据,这使分类器使域之间的较大数据分布差异。我们的广泛实验证明,与现有方法相比,Daugnet明显更好地推广到新的地理位置。

The domain adaptation of satellite images has recently gained an increasing attention to overcome the limited generalization abilities of machine learning models when segmenting large-scale satellite images. Most of the existing approaches seek for adapting the model from one domain to another. However, such single-source and single-target setting prevents the methods from being scalable solutions, since nowadays multiple source and target domains having different data distributions are usually available. Besides, the continuous proliferation of satellite images necessitates the classifiers to adapt to continuously increasing data. We propose a novel approach, coined DAugNet, for unsupervised, multi-source, multi-target, and life-long domain adaptation of satellite images. It consists of a classifier and a data augmentor. The data augmentor, which is a shallow network, is able to perform style transfer between multiple satellite images in an unsupervised manner, even when new data are added over the time. In each training iteration, it provides the classifier with diversified data, which makes the classifier robust to large data distribution difference between the domains. Our extensive experiments prove that DAugNet significantly better generalizes to new geographic locations than the existing approaches.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源