论文标题

在量子设备校准中抬高巨人的肩膀

Boosting on the shoulders of giants in quantum device calibration

论文作者

Wozniakowski, Alex, Thompson, Jayne, Gu, Mile, Binder, Felix

论文摘要

传统的机器学习应用程序(例如光学特征识别)是由于无法明确编程计算机来执行日常任务。在这种情况下,学习算法通常仅从大量数据集中的证据中得出模型。然而,在一些科学学科中,获得大量数据是不切实际的奢侈品。根据以前的科学发现,有一个明确的域模型。在这里,我们介绍了一种新的机器学习方法,该方法能够利用先前的科学发现,以提高对科学模型的普遍性。我们显示了它在预测超导量子设备上的哈密顿量的整个能源方面的功效,这是当前量子计算机校准的关键任务。我们的准确性超过了20美元以上的最新时间。$我们的方法表明,通过“站在巨人的肩膀上”,如何进一步增强人工智能。

Traditional machine learning applications, such as optical character recognition, arose from the inability to explicitly program a computer to perform a routine task. In this context, learning algorithms usually derive a model exclusively from the evidence present in a massive dataset. Yet in some scientific disciplines, obtaining an abundance of data is an impractical luxury, however; there is an explicit model of the domain based upon previous scientific discoveries. Here we introduce a new approach to machine learning that is able to leverage prior scientific discoveries in order to improve generalizability over a scientific model. We show its efficacy in predicting the entire energy spectrum of a Hamiltonian on a superconducting quantum device, a key task in present quantum computer calibration. Our accuracy surpasses the current state-of-the-art by over $20\%.$ Our approach thus demonstrates how artificial intelligence can be further enhanced by "standing on the shoulders of giants."

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源