论文标题
从670平方度的极性数据中的CMB电子模式角度谱测量
A measurement of the CMB E-mode angular power spectrum at subdegree scales from 670 square degrees of POLARBEAR data
论文作者
论文摘要
我们使用从2014年7月至2016年12月进行的150个GHz数据进行了极性实验,我们报告了宇宙微波背景(CMB)的电子模式极化功率谱的测量。我们达到有效的极化图噪声水平$ 32 \,μ\ mathrm {k} $ - $ \ mathrm {arcmin} $,跨为670平方度。我们在角度多极范围内测量EE功率谱$ 500 \ leq \ ell <3000 $,以高灵敏度追踪第三到第七个声峰。电子模式带能力的统计不确定性为$ \ sim2.3μ{\ rm k}^2 $ at $ \ ell \ sim 1000 $,系统不确定性为0.5 $μ{\ rm k}^2 $。数据与标准的$λ$ CDM宇宙学模型一致,概率超过0.38。我们结合了最近的CMB电子模式测量结果,并推断出$λ$ CDM以及扩展到$λ$ CDM的宇宙学参数。将基于地面的CMB极化测量值添加到Planck数据集中,将哈勃常数的不确定性降低了1.2至$ h_0 = 67.20 \ pm 0.57 {\ rm km \,s^{ - 1} \,mpc^{ - 1}} $。当允许相对论物种的数量($ n_ {eff} $)变化时,我们发现$ n_ {eff} = 2.94 \ pm 0.16 $,这与标准值3.046非常一致。取而代之的是允许原始的氦气丰度($ y_ {he} $)变化,数据有利于$ y_ {he} = 0.248 \ pm 0.012 $。这非常接近于大爆炸核合成的0.2467的期望。当$ y_ {he} $和$ n_ {eff} $变化时,我们发现$ n_ {eff} = 2.70 \ pm 0.26 $和$ y_ {he} = 0.262 \ pm 0.015 $。
We report a measurement of the E-mode polarization power spectrum of the cosmic microwave background (CMB) using 150 GHz data taken from July 2014 to December 2016 with the POLARBEAR experiment. We reach an effective polarization map noise level of $32\,μ\mathrm{K}$-$\mathrm{arcmin}$ across an observation area of 670 square degrees. We measure the EE power spectrum over the angular multipole range $500 \leq \ell <3000$, tracing the third to seventh acoustic peaks with high sensitivity. The statistical uncertainty on E-mode bandpowers is $\sim 2.3 μ{\rm K}^2$ at $\ell \sim 1000$ with a systematic uncertainty of 0.5$μ{\rm K}^2$. The data are consistent with the standard $Λ$CDM cosmological model with a probability-to-exceed of 0.38. We combine recent CMB E-mode measurements and make inferences about cosmological parameters in $Λ$CDM as well as in extensions to $Λ$CDM. Adding the ground-based CMB polarization measurements to the Planck dataset reduces the uncertainty on the Hubble constant by a factor of 1.2 to $H_0 = 67.20 \pm 0.57 {\rm km\,s^{-1} \,Mpc^{-1}}$. When allowing the number of relativistic species ($N_{eff}$) to vary, we find $N_{eff} = 2.94 \pm 0.16$, which is in good agreement with the standard value of 3.046. Instead allowing the primordial helium abundance ($Y_{He}$) to vary, the data favor $Y_{He} = 0.248 \pm 0.012$. This is very close to the expectation of 0.2467 from Big Bang Nucleosynthesis. When varying both $Y_{He}$ and $N_{eff}$, we find $N_{eff} = 2.70 \pm 0.26$ and $Y_{He} = 0.262 \pm 0.015$.