论文标题

通过蒙特卡洛树搜索和博学的模型在线安排住宅微电网

Online Scheduling of a Residential Microgrid via Monte-Carlo Tree Search and a Learned Model

论文作者

Shuai, Hang, He, Haibo

论文摘要

分布式可再生能源的不确定性给微电网的经济运作带来了重大挑战。常规的在线优化方法需要预测模型。但是,准确地预测可再生能源几代仍然是一项艰巨的任务。为了实现不需要预测模型来预测未来的PV/风和负载功率序列的住宅微电网(RM)的在线调度,本文研究了加固学习(RL)方法来应对这一挑战。具体而言,根据Muzero的最新发展,我们研究了其在RM调度问题上的应用。为了适应RM调度应用程序的特征,设计了一个优化框架,将基于模型的RL代理与数学优化技术相结合,并采用了长的短期内存(LSTM)单元来从过去的可再生生成和负载序列中提取功能。在每个时间步骤中,通过使用学识渊博的模型进行蒙特卡洛树搜索(MCT)并求解最佳功率流子问题,从而获得了最佳决策。通过这种方式,这种方法可以在不依赖预测模型的情况下依次在线做出操作决策。数值模拟结果证明了所提出的算法的有效性。

The uncertainty of distributed renewable energy brings significant challenges to economic operation of microgrids. Conventional online optimization approaches require a forecast model. However, accurately forecasting the renewable power generations is still a tough task. To achieve online scheduling of a residential microgrid (RM) that does not need a forecast model to predict the future PV/wind and load power sequences, this paper investigates the usage of reinforcement learning (RL) approach to tackle this challenge. Specifically, based on the recent development of Model-Based Reinforcement Learning, MuZero, we investigate its application to the RM scheduling problem. To accommodate the characteristics of the RM scheduling application, a optimization framework that combines the modelbased RL agent with the mathematical optimization technique is designed, and long short-term memory (LSTM) units are adopted to extract features from the past renewable generation and load sequences. At each time step, the optimal decision is obtained by conducting Monte-Carlo tree search (MCTS) with a learned model and solving an optimal power flow sub-problem. In this way, this approach can sequentially make operational decisions online without relying on a forecast model. The numerical simulation results demonstrate the effectiveness of the proposed algorithm.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源