论文标题
熊猫:外包敏感和不敏感数据的数据安全性
Panda: Partitioned Data Security on Outsourced Sensitive and Non-sensitive Data
论文作者
论文摘要
尽管对密码学进行了广泛的研究,但对外包数据的安全有效的查询处理仍然是一个开放的挑战。本文继续进行安全数据处理的新兴趋势,即确认整个数据集可能不敏感,因此,可以利用数据的非敏感性来克服现有基于加密的方法的限制。首先,我们提供了一个新的安全定义,标题为“分区数据安全性”,以确保非敏感数据(以clearText)和敏感数据(以加密形式)的联合处理不会导致任何泄漏。然后,本文提出了一种新的安全方法,标题为“查询箱”(QB),该方法允许在数据的非敏感和敏感部分上安全执行查询。 QB将查询映射到对敏感和非敏感数据上的一组查询,以使由于对敏感和非敏感数据的关节处理而不会发生泄漏。特别是,我们提出了用于选择,范围和加入查询的安全算法,以通过加密敏感和清晰的非敏感数据集执行。有趣的是,除了提高性能外,我们还表明QB实际上通过防止尺寸,频率计数和工作负载攻击来增强基础加密技术的安全性。
Despite extensive research on cryptography, secure and efficient query processing over outsourced data remains an open challenge. This paper continues along with the emerging trend in secure data processing that recognizes that the entire dataset may not be sensitive, and hence, non-sensitivity of data can be exploited to overcome limitations of existing encryption-based approaches. We, first, provide a new security definition, entitled partitioned data security for guaranteeing that the joint processing of non-sensitive data (in cleartext) and sensitive data (in encrypted form) does not lead to any leakage. Then, this paper proposes a new secure approach, entitled query binning (QB) that allows secure execution of queries over non-sensitive and sensitive parts of the data. QB maps a query to a set of queries over the sensitive and non-sensitive data in a way that no leakage will occur due to the joint processing over sensitive and non-sensitive data. In particular, we propose secure algorithms for selection, range, and join queries to be executed over encrypted sensitive and cleartext non-sensitive datasets. Interestingly, in addition to improving performance, we show that QB actually strengthens the security of the underlying cryptographic technique by preventing size, frequency-count, and workload-skew attacks.