论文标题
$ c^*$ - 组的代数的Cuntz-Pimsner模型
A Cuntz-Pimsner Model for the $C^*$-algebra of a Graph of Groups
论文作者
论文摘要
我们为$ c^*$ - 代数的组图提供了一个Cuntz-Pimsner模型。这使我们能够计算一系列示例的$ k $理论,并表明$ c^*$ - 代数的图表可以实现为Exel-pardo代数。我们还对Baumslag-solitar群体的交叉产品代数进行的杂交群体进行初步调查,该组织在某些树木的边界上是否满足$ kk $ $ -Theory的庞加莱双重性。通过构建$ k $ - 理论双重类别,我们计算了这些交叉产品的$ K $ - 知识。
We provide a Cuntz-Pimsner model for graph of groups $C^*$-algebras. This allows us to compute the $K$-theory of a range of examples and show that graph of groups $C^*$-algebras can be realised as Exel-Pardo algebras. We also make a preliminary investigation of whether the crossed product algebra of Baumslag-Solitar groups acting on the boundary of certain trees satisfies Poincaré duality in $KK$-theory. By constructing a $K$-theory duality class we compute the $K$-homology of these crossed products.