论文标题

三维线性Pauli方程的时间分配方法

A time splitting method for the three-dimensional linear Pauli equation

论文作者

Gutleb, Timon S., Mauser, Norbert J., Ruggeri, Michele, Stimming, Hans Peter

论文摘要

我们分析了在三个空间维度中求解时间依赖性线性Pauli方程的数值方法。 Pauli方程是对2个旋转器的schrödinger方程的半偏见概括,该方程是磁场和自旋的,后者在线性磁性schrödinger方程上的数值工作中缺少后者。我们在时间上使用四个操作员分裂,证明该方法的稳定性和收敛性,并得出误差估计值以及针对给定时间独立的电磁电位的情况的网格序列策略,从而为磁性schrödinger方程提供了先前结果的概括。

We analyze a numerical method to solve the time-dependent linear Pauli equation in three space dimensions. The Pauli equation is a semi-relativistic generalization of the Schrödinger equation for 2-spinors which accounts both for magnetic fields and for spin, with the latter missing in preceding numerical work on the linear magnetic Schrödinger equation. We use a four operator splitting in time, prove stability and convergence of the method and derive error estimates as well as meshing strategies for the case of given time-independent electromagnetic potentials, thus providing a generalization of previous results for the magnetic Schrödinger equation.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源