论文标题

驱动的动力学在密集的微卷动器中

Driven dynamics in dense suspensions of microrollers

论文作者

Sprinkle, Brennan, van der Wee, Ernest B., Luo, Yixiang, Driscoll, Michelle, Donev, Aleksandar

论文摘要

我们对由平行于地板平行的轴旋转的磁场驱动的沉积微部固定器的驱动动力学进行了详细的计算和实验测量。我们开发了一种润滑校正的布朗动力学方法,用于底壁上方沉积的驱动胶体的密集悬浮液。数值方法将附近的颗粒以及颗粒和底壁之间的润滑摩擦增加到远场流体动力相互作用的微型模型中。我们的实验将荧光标记与粒子跟踪结合在一起,以在密集的悬浮液中追踪单个颗粒的轨迹,并测量其推进速度。以前的计算研究[B. Sprinkle等,J。Chem。 Phys。,147,244103,2017]预测,在足够高的密度下,微纤维机的均匀悬架分为两层,墙壁上方的慢单层速度和底层顶部的快速层。在这里,我们验证了这一预测,显示了通过润滑校正的布朗动力学预测的颗粒速度的双峰分布与实验中测得的颗粒速度之间的良好定量一致性。计算方法准确地预测了观察到颗粒在实验中慢速和快速层之间切换的速率。我们还使用我们的数值方法来证明成对润滑在胶体微胶体密集的单层中运动诱导的相分离中发挥作用的重要作用,这是最近建议的Quincke辊的悬浮液[D. D. Geyer等人,物理评论X,9(3),031043,2019]。

We perform detailed computational and experimental measurements of the driven dynamics of a dense, uniform suspension of sedimented microrollers driven by a magnetic field rotating around an axis parallel to the floor. We develop a lubrication-corrected Brownian Dynamics method for dense suspensions of driven colloids sedimented above a bottom wall. The numerical method adds lubrication friction between nearby pairs of particles, as well as particles and the bottom wall, to a minimally-resolved model of the far-field hydrodynamic interactions. Our experiments combine fluorescent labeling with particle tracking to trace the trajectories of individual particles in a dense suspension, and to measure their propulsion velocities. Previous computational studies [B. Sprinkle et al., J. Chem. Phys., 147, 244103, 2017] predicted that at sufficiently high densities a uniform suspension of microrollers separates into two layers, a slow monolayer right above the wall, and a fast layer on top of the bottom layer. Here we verify this prediction, showing good quantitative agreement between the bimodal distribution of particle velocities predicted by the lubrication-corrected Brownian Dynamics and those measured in the experiments. The computational method accurately predicts the rate at which particles are observed to switch between the slow and fast layers in the experiments. We also use our numerical method to demonstrate the important role that pairwise lubrication plays in motility-induced phase separation in dense monolayers of colloidal microrollers, as recently suggested for suspensions of Quincke rollers [D. Geyer et al., Physical Review X, 9(3), 031043, 2019].

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源