论文标题
量子检测器的最佳控制
Optimal control for quantum detectors
论文作者
论文摘要
量子系统是有望感知弱信号的有希望的候选者,因为它们在估计外部字段参数时可以提供无与伦比的性能。但是,当试图检测背景噪声隐藏的弱信号时,信号到噪声比率比原始灵敏度更相关。在对信号和噪声的统计特性的适度假设下,我们确定了使用量子传感器在存在背景噪声的情况下检测外部信号的最佳量子控制。有趣的是,对于白色背景噪声,最佳解决方案是简单而众所周知的自旋锁定控制方案。我们使用数值技术进一步概括了这些结果,即背景噪声是相关的洛伦兹频谱。我们表明,对于增加相关时间,基于脉冲的序列(例如CPMG)也接近检测信号的最佳控制,而交叉取决于信号频率。这些结果表明,最佳检测方案可以在近期量子传感器中轻松实现,而无需复杂的脉冲塑形。
Quantum systems are promising candidates for sensing of weak signals as they can provide unrivaled performance when estimating parameters of external fields. However, when trying to detect weak signals that are hidden by background noise, the signal-to-noise-ratio is a more relevant metric than raw sensitivity. We identify, under modest assumptions about the statistical properties of the signal and noise, the optimal quantum control to detect an external signal in the presence of background noise using a quantum sensor. Interestingly, for white background noise, the optimal solution is the simple and well-known spin-locking control scheme. We further generalize, using numerical techniques, these results to the background noise being a correlated Lorentzian spectrum. We show that for increasing correlation time, pulse based sequences such as CPMG are also close to the optimal control for detecting the signal, with the crossover dependent on the signal frequency. These results show that an optimal detection scheme can be easily implemented in near-term quantum sensors without the need for complicated pulse shaping.