论文标题

开放动态系统的双重类别(扩展摘要)

Double Categories of Open Dynamical Systems (Extended Abstract)

论文作者

Myers, David Jaz

论文摘要

(封闭的)动态系统是事物如何的概念,以及鉴于它们的状况,它们可能会如何改变。事实证明,封闭动力学系统的构想和数学在那些可以将其研究对象与环境中隔离的科学中非常有用。但是,世界上许多不断变化的情况不能与他们的环境有意义地隔离 - 如果细胞从墙壁以外的所有物体中删除,它将死亡。为了研究与环境相互作用的系统,并以模块化的方式设计此类系统,我们需要一个强大的开放动力学系统理论。 在这个扩展的摘要中,我们提出了开放动态系统的一般定义。我们在这些系统之间定义了两种一般的形态:包括轨迹,稳态和周期性轨道在内的协方差形态;和逆向形态,可以将某些系统的变量插入其他系统的参数。我们为开放动力系统定义了索引双重类别,该系统由其接口索引,并使用双重侧面构造来构建双重开放动力学系统的双重类别。 在我们的主要定理中,我们构建了从索引双类动力学系统到索引双重类别跨度的索引双函数的协变量索引双函子。这表明,所有协变代表动态系统的协变结构(包括轨迹,稳态和周期轨道)都根据矩阵算法的定律组成。

A (closed) dynamical system is a notion of how things can be, together with a notion of how they may change given how they are. The idea and mathematics of closed dynamical systems has proven incredibly useful in those sciences that can isolate their object of study from its environment. But many changing situations in the world cannot be meaningfully isolated from their environment - a cell will die if it is removed from everything beyond its walls. To study systems that interact with their environment, and to design such systems in a modular way, we need a robust theory of open dynamical systems. In this extended abstract, we put forward a general definition of open dynamical system. We define two general sorts of morphisms between these systems: covariant morphisms which include trajectories, steady states, and periodic orbits; and contravariant morphisms which allow for plugging variables of some systems into parameters of other systems. We define an indexed double category of open dynamical systems indexed by their interface and use a double Grothendieck construction to construct a double category of open dynamical systems. In our main theorem, we construct covariantly representable indexed double functors from the indexed double category of dynamical systems to an indexed double category of spans. This shows that all covariantly representable structures of dynamical systems - including trajectories, steady states, and periodic orbits - compose according to the laws of matrix arithmetic.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源