论文标题
黄铁矿型二甲化物的高热电性能的化学趋势:ZnS2,CDS2和CDSE2
Chemical trends in the high thermoelectric performance of the pyrite-type dichalcogenides: ZnS2, CdS2 and CdSe2
论文作者
论文摘要
系统地研究了三种黄铁矿型IIB-VIA2二分法(ZnS2,CDS2和CDSE2)的热电特性,并与原型ZNSE2的热电学特性进行了比较,以优化其热电特性。使用声子Boltzmann传输方程式,我们发现它们都具有超低晶格的导热率。通过分析其振动特性,这些特性归因于源自宽松的嘎嘎作用金属原子的软声子模式,以及由垂直于强限制的非金属二聚体的所有原子的振动引起的强烈非谐度。另外,通过将这些特性沿该系列关联,我们阐明了许多化学趋势。我们发现,较重的原子质量,较大的原子位移参数以及金属和非金属原子之间的较长的键长可以有益于金属原子的松散嘎嘎声,因此会导致更柔和的声子模式,并且更强的非金属二聚体键可以提高非金属二聚体的键,从而提高较低的热传导性。此外,我们发现所有三种化合物在价和传导带边缘都具有复杂的能量等值线,同时允许P型和N型载体具有较大密度的有效质量和较小的电导率有效质量。因此,计算出的优异热电图(ZT)可以达到P型和N型掺杂的较大值。我们的研究说明了嘎嘎作响的金属原子和局部非金属二聚体对热传输性能的影响以及不同载体有效质量在这些黄铁矿型二分法中对电气传输特性的重要性,这些二甲藻元化物可用于预测和优化未来的热电离化合物的热电学特性。
The thermoelectric properties of the three pyrite-type IIB-VIA2 dichalcogenides (ZnS2, CdS2 and CdSe2) are systematically investigated and compared with those of the prototype ZnSe2 in order to optimize their thermoelectric properties. Using the phonon Boltzmann transport equation, we find that they all have ultralow lattice thermal conductivities. By analyzing their vibrational properties, these are attributed to soft phonon modes derived from the loosely bound rattling-like metal atoms and to strong anharmonicities caused by the vibrations of all atoms perpendicular to the strongly bound nonmetallic dimers. Additionally, by correlating those properties along the series, we elucidate a number of chemical trends. We find that heavier atom masses, larger atomic displacement parameters and longer bond lengths between metal and nonmetal atoms can be beneficial to the looser rattling of the metal atoms and therefore lead to softer phonon modes, and that stronger nonmetallic dimer bonds can boost the anharmonicities, both leading to lower thermal conductivities. Furthermore, we find that all three compounds have complex energy isosurfaces at valence and conduction band edges that simultaneously allow for large density-of-states effective masses and small conductivity effective masses for both p-type and n-type carriers. Consequently, the calculated thermoelectric figures of merit (ZT), can reach large values both for p-type and n-type doping. Our study illustrates the effects of rattling-like metal atoms and localized nonmetallic dimers on the thermal transport properties and the importance of different carrier effective masses to electrical transport properties in these pyrite-type dichalcogenides, which can be used to predict and optimize the thermoelectric properties of other thermoelectric compounds in the future.