论文标题

5G网络的安全联合学习框架

A Secure Federated Learning Framework for 5G Networks

论文作者

Liu, Yi, Peng, Jialiang, Kang, Jiawen, Iliyasu, Abdullah M., Niyato, Dusit, El-Latif, Ahmed A. Abd

论文摘要

最近,已提出联邦学习(FL)作为新兴范式,以使用分布式培训数据集构建机器学习模型,这些数据集在5G网络的不同设备上存储并维护,同时为参与者提供隐私保护。在FL中,中央聚合器累积了参与者上传的本地更新,以更新全局模型。但是,有两个关键的安全威胁:中毒和会员推理攻击。这些攻击可能是由恶意或不可靠的参与者进行的,从而导致全球模型的施工失败或FL模型的隐私泄漏。因此,FL开发安全手段至关重要。在本文中,我们提出了一个基于区块链的安全FL框架,以创建智能合约,并防止恶意或不可靠的参与者参与FL。为此,中央聚合者通过自动执行智能合约来防御中毒攻击来认识到恶意和不可靠的参与者。此外,我们使用当地的差异隐私技术来防止会员推理攻击。数值结果表明,所提出的框架可以有效地阻止中毒和成员推理攻击,从而提高5G网络中FL的安全性。

Federated Learning (FL) has been recently proposed as an emerging paradigm to build machine learning models using distributed training datasets that are locally stored and maintained on different devices in 5G networks while providing privacy preservation for participants. In FL, the central aggregator accumulates local updates uploaded by participants to update a global model. However, there are two critical security threats: poisoning and membership inference attacks. These attacks may be carried out by malicious or unreliable participants, resulting in the construction failure of global models or privacy leakage of FL models. Therefore, it is crucial for FL to develop security means of defense. In this article, we propose a blockchain-based secure FL framework to create smart contracts and prevent malicious or unreliable participants from involving in FL. In doing so, the central aggregator recognizes malicious and unreliable participants by automatically executing smart contracts to defend against poisoning attacks. Further, we use local differential privacy techniques to prevent membership inference attacks. Numerical results suggest that the proposed framework can effectively deter poisoning and membership inference attacks, thereby improving the security of FL in 5G networks.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源