论文标题

高斯来源的二次隐私信号游戏和MMSE信息瓶颈问题

Quadratic Privacy-Signaling Games and the MMSE Information Bottleneck Problem for Gaussian Sources

论文作者

Kazıklı, Ertan, Gezici, Sinan, Yüksel, Serdar

论文摘要

我们研究了一个隐私信号游戏问题,其中一个具有隐私性的发件人观察一对相关的随机向量,这些向量被建模为共同的高斯。发件人的目的是隐藏这些随机向量之一,并传达另一个向量之一,而接收器的目的是准确估计两个随机向量。我们在游戏理论框架中分析了这些相互矛盾的目标,其二次成本取决于(发件人的承诺条件),我们考虑了Nash或Stackelberg(贝叶斯说服)平衡。我们表明,在所有可允许的政策之间,由一组明确表征的线性策略实现了所有可接受政策之间的支配性NASH均衡。我们还表明,回报的主要NASH平衡与Stackelberg平衡一致。我们在均方根误差失真标准下制定了stackelberg框架内的信息瓶颈问题,其中信息瓶颈设置具有进一步的限制,即在发件人处只观察到其中一个随机变量。我们表明,这个MMSE高斯信息瓶颈问题承认了一种线性解决方案,该解决方案在论文中明确表征。我们提供明确的条件,以了解最佳解决方案或NASH设置中的平衡解决方案是有益的或无信息的。

We investigate a privacy-signaling game problem in which a sender with privacy concerns observes a pair of correlated random vectors which are modeled as jointly Gaussian. The sender aims to hide one of these random vectors and convey the other one whereas the objective of the receiver is to accurately estimate both of the random vectors. We analyze these conflicting objectives in a game theoretic framework with quadratic costs where depending on the commitment conditions (of the sender), we consider Nash or Stackelberg (Bayesian persuasion) equilibria. We show that a payoff dominant Nash equilibrium among all admissible policies is attained by a set of explicitly characterized linear policies. We also show that a payoff dominant Nash equilibrium coincides with a Stackelberg equilibrium. We formulate the information bottleneck problem within our Stackelberg framework under the mean squared error distortion criterion where the information bottleneck setup has a further restriction that only one of the random variables is observed at the sender. We show that this MMSE Gaussian Information Bottleneck Problem admits a linear solution which is explicitly characterized in the paper. We provide explicit conditions on when the optimal solutions, or equilibrium solutions in the Nash setup, are informative or noninformative.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源