论文标题

ITERDET:在拥挤环境中进行对象检测的迭代方案

IterDet: Iterative Scheme for Object Detection in Crowded Environments

论文作者

Rukhovich, Danila, Sofiiuk, Konstantin, Galeev, Danil, Barinova, Olga, Konushin, Anton

论文摘要

基于深度学习的检测器通常会产生一组冗余的对象边界框,包括同一对象的许多重复检测。然后,使用非最大最大抑制(NMS)对这些框进行过滤,以便每个目标对象精确地选择一个边界框。这种贪婪的方案很简单,为孤立的物体提供了足够的准确性,但在拥挤的环境中通常会失败,因为两个人都需要为不同对象保留盒子并抑制重复的检测。在这项工作中,我们开发了一个替代性迭代方案,其中在每次迭代中都检测到一个新的对象子集。从以前的迭代中将检测到的框传递给网络,以确保不会两次检测到相同的对象。这种迭代方案可以应用于对训练和推理程序进行较小修改的一阶段和两阶段对象探测器。我们在四个数据集上使用两个不同的基线探测器进行了广泛的实验,并对基线显示出显着改善,从而导致了CrowdHuman和Widerperson数据集的最新性能。源代码和训练有素的模型可在https://github.com/saic-vul/iterdet上找到。

Deep learning-based detectors usually produce a redundant set of object bounding boxes including many duplicate detections of the same object. These boxes are then filtered using non-maximum suppression (NMS) in order to select exactly one bounding box per object of interest. This greedy scheme is simple and provides sufficient accuracy for isolated objects but often fails in crowded environments, since one needs to both preserve boxes for different objects and suppress duplicate detections. In this work we develop an alternative iterative scheme, where a new subset of objects is detected at each iteration. Detected boxes from the previous iterations are passed to the network at the following iterations to ensure that the same object would not be detected twice. This iterative scheme can be applied to both one-stage and two-stage object detectors with just minor modifications of the training and inference procedures. We perform extensive experiments with two different baseline detectors on four datasets and show significant improvement over the baseline, leading to state-of-the-art performance on CrowdHuman and WiderPerson datasets. The source code and the trained models are available at https://github.com/saic-vul/iterdet.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源