论文标题
具有非线性系统浴相互作用的二维势能表面的质子隧穿:反应速率的热抑制
Proton Tunneling in a Two-Dimensional Potential Energy Surface with a Non-linear System-Bath Interaction: Thermal Suppression of Reaction Rate
论文作者
论文摘要
我们考虑了由质子转移反应(PTR)坐标描述的质子转移(PT)系统,以及促进振动(RPV)坐标的速率与非马克维亚热池相互作用。尽管使用二维(2D)势能表面(PES)广泛讨论了PT过程的动力学,但尤其是热浴的作用,尤其是对于系统浴相互作用的现实形式,尚未得到很好的探索。先前的研究主要基于一维模型和线性线性(LL)系统托架相互作用。在本研究中,我们介绍了指数线性(EL)系统托管相互作用,该相互作用是从对现实情况下对PTR-PRV系统的分析得出的。这种相互作用主要导致在PTR模式下引起振动驱动,在RPV模式下种群松弛。使用运动方法的层次结构方程进行了数值模拟。我们分析了在不同温度和浴室相关时间的不同值下,热浴相互作用在化学反应速率上的作用。本结果的一个突出特征是,尽管经典和量子Kramers理论预测的反应速率随着温度升高而增加,但当前的EL相互作用模型表现出相反的温度依赖性。在当前的EL模型中,KRAMERS的反应速率随着系统浴耦合的函数的函数也被抑制,该模型变成了高原样曲线,以实现更大的系统托架相互作用强度。这些特征是由PTR模式下的振动驱动过程的相互作用以及RPV模式下的种群放松过程产生的。
We consider a proton-transfer (PT) system described by a proton-transfer reaction (PTR) coordinate and a rate promoting vibrational (RPV) coordinate interacting with a non-Markovian heat-bath. While dynamics of PT processes has been widely discussed using two-dimensional (2D) potential energy surfaces (PES), the role of the heat-bath, in particular, for a realistic form of the system-bath interaction has not been well explored. Previous studies are largely based on one-dimensional model and linear-linear (LL) system-bath interaction. In the present study, we introduce an exponential-linear (EL) system-bath interaction, which is derived from the analysis of a PTR-PRV system in a realistic situation. This interaction mainly causes vibrational dephasing in the PTR mode and population relaxation in the RPV mode. Numerical simulations were carried out using hierarchy equations of motion approach. We analyze the role of the heat-bath interaction on the chemical reaction rate as a function of the system-bath coupling strength at different temperature and for different values of the bath correlation time. A prominent feature of the present result is that while the reaction rate predicted from classical and quantum Kramers theory increases as the temperature increases, the present EL interaction model exhibits opposite temperature dependence. Kramers turn-over profile of the reaction rate as a function of the system-bath coupling is also suppressed in the present EL model turning into a plateau-like curve for larger system-bath interaction strength. Such features arise from the interplay of the vibrational dephasing process in the PTR mode and the population relaxation process in the RPV mode.